Logical Quantifications: Conversions

R(x): x ∈ 3342_class P(x): x receives A+

$$(\forall X \bullet R(X) \Rightarrow P(X)) \Leftrightarrow \neg(\exists X \bullet R \land \neg P)$$

$$(\exists X \bullet R \land P) \Leftrightarrow \neg(\forall X \bullet R \Rightarrow \neg P)$$

Sets: Exercises

Set membership: Rewrite e ∉ S in terms of ∈ and ¬

Find a common pattern for defining:

- 1. = (numerical equality) via ≤ and ≥
- 2. = (set equality) via \subseteq and \supseteq

$$S = \{1, 2, 3\}, T = \{2, 3, 1\}, U = \{3, 2\}$$

	S		Τ		U	
S	<u>_</u>	C	<u>_</u>	C	<u>_</u>	C
T	⊆	С	⊆	С	⊆	C
U	⊆	С	⊆	C	⊆	C

Is set difference (\) commutative?

Exercise: How many sets of size 3 can be made out of values 1, 2, 3, 4, 5?

Combinations: Formula and Interpretation

Power Set

Calculate the power set of {1, 2, 3}.

Given a set S, formulate the cardinality of its power set.

Cardinality of Power Set: Interpreting Formula

- Calculate by considering subsets of various cardinalities.
- Calculate by considering whether a member should be included.

Set of Tuples

Given n sets S_1, S_2, \ldots, S_n , a *cross/Cartesian product* of theses sets is a set of n-tuples.

Each n-tuple (e_1, e_2, \ldots, e_n) contains n elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \leq i \leq n\}$$

Example: Calculate {a, b} **X** {2, 4} **X** {\$, &}

Set of Possible Relations

- Set of possible relations on S and T:
- Dedicated symbol for set of possible relations on S and T:
- Declare that set r is a relation on S and T:

Example: Enumerate all relations on {a, b} and {2, 4}.

Hint: How many?

Relational Operations: Domain, Range, Inverse

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

Exercise: Relate the domains and ranges of r and its inverse.

Relational Operations: Image

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

Exercises

- Image of {a, b} on r?
- Image of {1, 2} on r?
- Image of {1, 2} on the inverse of r?
- Calculate r's range via an image.
- Calculate r's domain via an image.

Relational Operations: Restrictions vs. Subtractions

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$